Skip ke Konten

Social Media Sentiment Analysis for Public Policy Decision Making

Big Data Analytics Approach for Democratic Governance

Penulis: Dr. Maya Sari, S.Sos., M.A., Prof. Ir. Andi Prasetyo, M.Si., Dr. Fitri Handayani, S.Kom., M.T.

Informasi Konferensi

Konferensi: International Conference on Digital Society and Governance (ICDSG)

Tanggal: 2024-07-18

Lokasi: Bali, Indonesia

Penyelenggara: International Association for Digital Society Research

Publisher: Elsevier

Halaman: 567-574

Scopus

Abstrak

Abstract

This study develops a comprehensive methodology for social media sentiment analysis to support public policy decision-making processes. The research leverages big data analytics and machine learning techniques to extract meaningful insights from citizen opinions expressed through social media platforms.

Research Methodology:

  • Multi-platform social media data collection and preprocessing
  • Advanced natural language processing for Indonesian text analysis
  • Real-time sentiment classification and trend analysis
  • Policy impact assessment through sentiment tracking

Case studies on three major policy initiatives show 85% accuracy in predicting public reception and 70% improvement in policy adjustment effectiveness when informed by sentiment analysis results.

Kata Kunci

sentiment analysis, social media, public policy, big data, democratic governance, computational social science

Info Singkat

Jenis Presentasi: oral

Peringkat Konferensi: B

Bidang: Social Sciences, Public Policy, Data Analytics

Sitasi: 18

Paper Terkait
Digital Humanities: Computational Analysis of Literary Texts
International Conference on Digital Humanities (2024)