Proposal Penelitian: Implementasi Machine Learning untuk Deteksi Cyber Attack pada IoT Networks
Review proposal penelitian machine learning untuk cybersecurity IoT
Penulis: Dr. Rina Kartika, S.T., M.T., Dr. Ahmad Prakoso, S.Kom., M.Kom.
Afiliasi: Universitas Indonesia
Negara: Indonesia
Tanggal Review: 30 November 2024
Publikasi: BRIN - Fundamental Research Grant
Putaran: Round 1
Proposal penelitian ini mengembangkan framework machine learning untuk deteksi cyber attack pada IoT networks dengan pendekatan federated learning dan edge computing. Penelitian akan mengumpulkan data dari berbagai jenis IoT devices dan mengembangkan adaptive ML models.
Metodologi mencakup data collection dari smart home, industrial IoT, dan healthcare IoT systems. Model akan diuji pada real-world scenarios dengan fokus pada real-time detection dan minimal false positives.
Area Fokus Review
Research novelty, methodology soundness, feasibility, potential impact, team capability
Evaluasi
Kelebihan
✓ Excellent Research Proposal
1. Research Novelty
Proposal menawarkan novel approach dengan kombinasi:
- Edge computing untuk real-time processing
- Federated learning untuk privacy preservation
- Multi-modal data fusion (network traffic + device behavior)
- Adaptive ML models untuk berbagai jenis IoT devices
2. Methodology Excellence
Metodologi yang comprehensive dan sound:
| Phase | Activities | Timeline |
|---|---|---|
| Phase 1 | Data collection & preprocessing | Months 1-4 |
| Phase 2 | Model development & training | Months 5-12 |
| Phase 3 | Testing & validation | Months 13-18 |
| Phase 4 | Deployment & evaluation | Months 19-24 |
3. Team Capability
Tim peneliti dengan proven track record:
- 15+ publications in cybersecurity and ML
- 3 patents in IoT security
- Previous collaboration with industry partners
- Experience in funded research projects
4. Expected Impact
- Scientific: Advance knowledge in IoT cybersecurity
- Practical: Protect critical IoT infrastructure
- Economic: Reduce cyber attack costs for industry
- Social: Enhance cybersecurity awareness
Kelemahan
⚠ Minor Concerns:
- Data Availability: Access to real IoT network data perlu lebih detail
- Scalability: Testing pada large-scale networks perlu diperjelas
Note: These are not critical issues and can be addressed during implementation.
Rekomendasi
✓ STRONGLY RECOMMENDED FOR FUNDING
Proposal penelitian yang excellent dengan novelty tinggi dan metodologi yang sound. Tim peneliti kompeten dengan track record yang baik.
Minor clarifications needed:
- Detail data acquisition strategy
- Scalability testing plan
- Risk mitigation for data privacy
Recommendation: APPROVE FUNDING
Catatan Reviewer
FUNDING RECOMMENDATION: APPROVED
Proposal ini memiliki semua elemen yang dibutuhkan untuk penelitian fundamental berkualitas tinggi. Kombinasi machine learning dan IoT cybersecurity sangat relevan dengan tantangan saat ini.
Expected Outcomes:
- Scientific Contribution: Novel ML framework untuk IoT security
- Publications: Target 8+ papers in Q1/Q2 journals
- Technology: Open-source security toolkit
- Industry Impact: Partnership dengan 3+ companies
- Human Resources: Training 5 PhD students
Funding Priority: HIGH
Budget: Rp 2.5 billion (24 months)
Informasi Review
-
Kategori
Review Proposal Penelitian
-
Jenis Review
Review Penelitian
-
Level
Nasional
-
Metode Review
Double Blind
-
Tanggal Submit
1 Nov 2024
-
Tanggal Selesai
30 Nov 2024
-
Durasi Review
29 hari
Penerbit/Institusi
Beban Kerja
-
Skor Review
8.5/10
-
Waktu Review
9.0 jam
Kata Kunci
machine learning IoT security cyber attack detection federated learning edge computing
Aktivitas Terkait
-
Kurikulum Program Studi Informatika 2024
1 Des 2024