Skip ke Konten

Climate Change Impact Modeling Using Machine Learning

Predictive Analytics for Environmental Policy and Urban Planning

Penulis: Prof. Dr. Mada Rahman, S.Kom., M.T., Dr. Fitri Handayani, S.Kom., M.T., Dr. Michael Schmidt, Ph.D.

Informasi Konferensi

Konferensi: International Conference on Computational Science and Its Applications (ICCSA)

Tanggal: 2024-12-02

Lokasi: Melbourne, Australia

Penyelenggara: IEEE Computer Society

Publisher: Springer

Halaman: 456-473

Scopus

Abstrak

Abstract

This paper develops machine learning models for climate change impact assessment and prediction. We integrate multiple data sources including satellite imagery, weather patterns, and socio-economic indicators to create comprehensive predictive models for environmental policy making.

Modeling Approach:

  • Ensemble machine learning for climate prediction
  • Spatial-temporal analysis of environmental data
  • Uncertainty quantification in climate projections
  • Policy impact assessment frameworks

Model validation shows 89% accuracy in predicting local climate impacts and provides actionable insights for urban adaptation planning.

Kata Kunci

climate change modeling, machine learning, environmental policy, predictive analytics, Springer

Info Singkat

Jenis Presentasi: oral

Peringkat Konferensi: B

Bidang: Environmental Science, Computational Mathematics

Sitasi: 44

Paper Terkait
Deep Learning for Financial Time Series Prediction
International Conference on Computational Finance (2024)