Skip ke Konten

Deep Learning for Financial Time Series Prediction

LSTM and Transformer Models for Stock Market Forecasting

Penulis: Prof. Dr. Mada Rahman, S.Kom., M.T., Dr. Rama Pratama, S.Kom., M.T., Dr. Sarah Johnson, Ph.D.

Informasi Konferensi

Konferensi: International Conference on Computational Finance (ICCF)

Tanggal: 2024-07-30

Lokasi: Zurich, Switzerland

Penyelenggara: Society for Computational Economics

Publisher: ACM

Halaman: 234-248

ACM DL Scopus Web of Science

Abstrak

Abstract

This paper presents advanced deep learning architectures for financial time series prediction. We compare Long Short-Term Memory (LSTM) networks and Transformer models for stock market forecasting, incorporating multiple market indicators and sentiment analysis.

Model Architectures:

  • Multi-layer LSTM with attention mechanisms
  • Transformer-based temporal modeling
  • Multi-modal input integration (price, volume, news)
  • Ensemble prediction strategies

Empirical results demonstrate 68% directional accuracy and 15% improvement over traditional forecasting methods in volatile market conditions.

Kata Kunci

deep learning, financial time series, LSTM, transformers, stock market prediction, ACM

Info Singkat

Jenis Presentasi: oral

Peringkat Konferensi: A

Bidang: Computational Finance, Machine Learning

Sitasi: 73

Paper Terkait
Climate Change Impact Modeling Using Machine Learning
International Conference on Computational Science and Its Applications (2024)